\(Find\;the\;value\;of\;log_4 64\)
\(Find\;the\;value\;of\;log_4 64\)
lo&i4 + lo&i16 + lo&i64 + lo&i256 = 10. Then a = ?
lo&i4 + lo&i16 + lo&i64 + lo&i256 = 10. Then a = ?
Find the value of \( log_{10}.001\)
Find the value of \( log_{10}.001\)
\(({21\over{10}})^x=2\). Then x=?
\(({21\over{10}})^x=2\). Then x=?
\(lo&2s\)\(\sqrt{5}\)
\(lo&2s\)\(\sqrt{5}\)
3 log 5 + 2 log 4 - log 2 = ?
3 log 5 + 2 log 4 - log 2 = ?
Find the value of \(log_{10}100\)
Find the value of \(log_{10}100\)
\(log_{15}3375\) x lo&i1024 =?
\(log_{15}3375\) x lo&i1024 =?
log (2x - 3) = 2
log (2x - 3) = 2
Logarithms to the base 10 called ...................
Logarithms to the base 10 called ...................
log (12 - x) = -1
log (12 - x) = -1
\(log (x^2 - 6x + 6) = 0\)
\(log (x^2 - 6x + 6) = 0\)
log an:bn + log bn:cn +log cn l an
log an:bn + log bn:cn +log cn l an
Find the value of \(log_6216\)
Find the value of \(log_6216\)
\(log{16\over{15}}+5log{25\over{24}}+3log{81\over{80}}=log\;x,x= ?\)
\(log{16\over{15}}+5log{25\over{24}}+3log{81\over{80}}=log\;x,x= ?\)
If log x + log (x + 3) = 1 then the value(s) of x will be, the solution of the equation
If log x + log (x + 3) = 1 then the value(s) of x will be, the solution of the equation
Solve for x:
\(2log{4\over{3}}-log{x\over{10}}+log{63\over{160}}=0\)
Solve for x:
\(2log{4\over{3}}-log{x\over{10}}+log{63\over{160}}=0\)
log (3x - 2) = 1
log (3x - 2) = 1
\(log_{10}X-log_{10}\sqrt{x}=2\;logx\;10\)
\(log_{10}X-log_{10}\sqrt{x}=2\;logx\;10\)