Simplify:
\(log{5\over{3}}+log{9\over{5}}-log{9\over{3}}\)
Simplify:
\(log{5\over{3}}+log{9\over{5}}-log{9\over{3}}\)
Simplify
\(log{m\over{n}}+log{n\over{p}}+log{p\over{m}}\)
Simplify
\(log{m\over{n}}+log{n\over{p}}+log{p\over{m}}\)
Solve :
\(log_2256 = x\)
Solve :
\(log_2256 = x\)
Simplify
\(2log_{10}5+log_{10}8-{1\over{2}}log_{10}4\)
Simplify
\(2log_{10}5+log_{10}8-{1\over{2}}log_{10}4\)
Simplify:
3log2 + 3log3
Simplify:
3log2 + 3log3
If log2=0.3010 and log3=0.4771 find log6
If log2=0.3010 and log3=0.4771 find log6
Simplify :
\({1\over{log_a(ab)}}+{1\over{log_b(ab)}}\)
Simplify :
\({1\over{log_a(ab)}}+{1\over{log_b(ab)}}\)
Simplify
log18 + log5 - 2log3
Simplify
log18 + log5 - 2log3
If log2 = 0.3010 and log3 = 0.4771 find log9
If log2 = 0.3010 and log3 = 0.4771 find log9
\(log_b a\times log_ab =\)
\(log_b a\times log_ab =\)
Find the value of \(log_{10}.01\)
Find the value of \(log_{10}.01\)
Find the value of \(log_2{1\over{8}}\)
Find the value of \(log_2{1\over{8}}\)
If log2 = 0.3010 and log3 = 0.4771 find log18
If log2 = 0.3010 and log3 = 0.4771 find log18
Simpiify
2log5 + log3 - 2log2 - log ?
Simpiify
2log5 + log3 - 2log2 - log ?
Simplify:
\(log{m^2\over{np}}+log{n^2\over{pm}}+log{p^2\over{mn}}\)
Simplify:
\(log{m^2\over{np}}+log{n^2\over{pm}}+log{p^2\over{mn}}\)
Determine x satisfying \(log_{\sqrt{8}}x={10\over{3}}\)
Determine x satisfying \(log_{\sqrt{8}}x={10\over{3}}\)
What is the logarithm of 1
What is the logarithm of 1
Find log16 to the base \(\sqrt{2}\)
Find log16 to the base \(\sqrt{2}\)
Solve : \(2=log_{10}x\)
Solve : \(2=log_{10}x\)
Solve :
\(log_2\; ^{3}\sqrt{8}=x\)
Solve :
\(log_2\; ^{3}\sqrt{8}=x\)