8.88 × 88.8 × 88 = ?
8.88 × 88.8 × 88 = ?
\({64^{12} \over{ 4^{15}}} = 64?\)
\({64^{12} \over{ 4^{15}}} = 64?\)
14% of 80 + ?% of 90 = 31.9
14% of 80 + ?% of 90 = 31.9
(5 × 7)% of (34 × 55) + 456.60 = 699.1 + ?
(5 × 7)% of (34 × 55) + 456.60 = 699.1 + ?
65% of \(\sqrt{3136}\times5\)=?+154
65% of \(\sqrt{3136}\times5\)=?+154
\({{9\over{2}}\times{27\over{9}}\over{{18\over{7.5}}\times{5\over{4}}}}\) = ?
\({{9\over{2}}\times{27\over{9}}\over{{18\over{7.5}}\times{5\over{4}}}}\) = ?
\({(80\times0.40)^3 \over {(40\times1.6)^3}} \times (128)^3 = (2)^? + 7\)
\({(80\times0.40)^3 \over {(40\times1.6)^3}} \times (128)^3 = (2)^? + 7\)
\({(0.81)^2\over{(0.729)^3}}\times(0.9)^2=(0.9)^{?-3}\)
\({(0.81)^2\over{(0.729)^3}}\times(0.9)^2=(0.9)^{?-3}\)
?% of 280 + 18% of 550 = 143.8
?% of 280 + 18% of 550 = 143.8
\({11.5\over{55}}+{13\over{6}}-{18.5\over{15}}={(?)^{{1\over{3}}}\over{4}}+{37\over{30}}\)
\({11.5\over{55}}+{13\over{6}}-{18.5\over{15}}={(?)^{{1\over{3}}}\over{4}}+{37\over{30}}\)
\({11\over{7}}+{8\over{5}}+{4\over{3}}=?\)
\({11\over{7}}+{8\over{5}}+{4\over{3}}=?\)
\(\sqrt{97344}=?\)
\(\sqrt{97344}=?\)
1898 ÷ 73 × 72 = (?)2 × 13
1898 ÷ 73 × 72 = (?)2 × 13
\({{1\over{6}}\;of\;92\over{of\;{24\over{23}}}}\;of\;(650)=85+?\)
\({{1\over{6}}\;of\;92\over{of\;{24\over{23}}}}\;of\;(650)=85+?\)
\(\sqrt{\sqrt{2500}+\sqrt{961}}=(?)^2\)
\(\sqrt{\sqrt{2500}+\sqrt{961}}=(?)^2\)
15 : 66 : : 185 : ?
15 : 66 : : 185 : ?
\({(21)^2 – 3717 \over{ 59}} = ? × 8 \)
\({(21)^2 – 3717 \over{ 59}} = ? × 8 \)
\({27\over{7}}-{25\over{4}}+{16\over{3}}=?\)
\({27\over{7}}-{25\over{4}}+{16\over{3}}=?\)
\({(15\times0.40)^4\over{({1080\over{30}}})^4 }(27\times8)^4=(3\times2)^{?+5}\)
\({(15\times0.40)^4\over{({1080\over{30}}})^4 }(27\times8)^4=(3\times2)^{?+5}\)
\((\sqrt{8}\times\sqrt{8})^{{1\over{2}}}+(9)^{{1\over{2}}}=(?)^3+\sqrt{8}-340\)
\((\sqrt{8}\times\sqrt{8})^{{1\over{2}}}+(9)^{{1\over{2}}}=(?)^3+\sqrt{8}-340\)